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Third order difference equations for hyperbolic initial value problems have been 
developed in one and two space variables. Splitting methods in time and in space are 
used to achieve simplicity and economy in the algorithm. Example calculations are 
shown indicating the accuracy attainable. 

1. WTR~DU~~~N 

In recent years there has appeared in the literature a surge in the number of 
papers dealing with numerical solutions of partial differential equations. And, 
usually, the difference methods employed are of first or second order of accuracy. 
This restriction is not an arbitrary one, but rather, is related to the fact that com- 
puting machines have been relatively slow and their high speed memory capacity 
has been small; hence, a usable computational scheme must necessarily have the 
attribute of simplicity. In problems of more than one space dimension, even greater 
emphasis is placed on simplicity. 

It is anticipated, however, that a new era of computability is almost upon us. We 
are referring to the use of parallel processors, i.e., N-serial type computing proces- 
sors, each of which is synchronized and each of which can communicate with the 
other processors through a common memory or central controller. The value of N 
may be from 26 to 2* and the arithmetic speed of each individual processing unit 
will be in the sub-microsecond range. Through organizing the data, each mesh 
point or string of mesh points may have its own central processor, which means the 
solution on the entire mesh may be advanced essentially simultaneously. For such 
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a class of computing machines, the requirement of simplicity for the difference 
scheme may be relaxed. 

In this note we propose a class of difference schemes for first order hyperbolic 
problems in one and two space dimensions. The methods are applicable to non- 
linear initial value problems; these schemes are uniformly third order accurate 
in both the space variables and time and are similar to methods proposed by 
Strang [B]. 

2. A THIRD ORDER DIFFERENCE OPERATOR 

We will construct a difference operator which is uniformly accurate to third order 
in each of the space and time increments dx and dt. There are schemes which are 
third or fourth order accurate in the space variable, but second order in the time 
step [lo]. Such methods arc, therefore, not uniformly third accurate in both the 
independent variables. The approximation scheme described here is constructed 
in divergent form-just as the original differential equation is written in divergent 
or conservation form. In order to describe the derivation, consider the differential 
equation in one dimension 

ut = i;(u, & 1, d 

4x, 0) = 4dx) 
(2.1) 

-co<x<oo 

in which the flux is computed by evaluating F. Of course, for partial differential 
equations, F cannot be computed exactly since it depends on derivatives in the 
space variables. An approximate evaluation of F can be obtained if the space 
derivative, u, , is replaced by a difference approximation SU. In this paper we look 
at Runge-Kutta type approximations to (2.1) which are third order accurate and 
for which the algorithm 

where 

is a third order Runge-Kutta method of integration for tist order ordinary 
differential equations and is the basis for the method derived for partial differential 
equations. Since three evaluations of F(t, u) are required, we would expect the 
same number of evaluations of difference approximations to the flux for the partial 
differential equation to be required. The form of the function F for the partial 
differential equation 

ut =f#=F (2.2) 
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leads to the requirement that the approximation to F, $’ differ only by terms of 
O(M) so that if rl is a difference approximation to u satisfying 

qt + At) = ii(t) + At E 

then 1 u(t + dz) - G(t + dt)l = O(dt*). Here 

F(x~ 9 t, 9 ui 3 8~p.m.) = F(x, t, U, U, ,*-.) + O(dts)a 

The great advantage of Runge-Kutta methods (one example is Richtmyer’s 
Lax-Wendroff two step method [l]) is that to achieve higher order accuracy in 
approximating u(t) only repeated evaluations of F are required. For complicated 
F, however, this advantage becomes a disadvantage so that it may be desirable to 
use methods which do not require multiple evaluations of F(x), having only slight 
changes in the value of the argument, x, of F. 

As in ordinary differential equation theory it is possible to construct approxima- 
tion techniques to partial differential equations using Taylor series methods. For 
high accuracy this requires evaluation of higher derivatives of (2.1) and for 
coupred systems of equations, i.e., for systems of the form (2.2), these derivatives 
become more and more complicated to evaluate. Lax and Wendroff [2] showed, 
however, that for systems of conservation laws given by (2.2), Taylor’s method 
can be used to construct an elegant second order accurate algorithm. They showed 
that att can be evaluated by using the original differential Eq. (2.2). If the matrix 
A = a@u is introduced, then (2.2) can be written by using the chain rule as 

so that 

(2.3) 

is found in terms of space derivatives only. If one wished to construct a third order 
method, it would be necessary to compute the time derivative of (2.3) for the next 
term in the Taylor series. Unfortunately, it is not possible to then eliminate terms 
containing &4/& = A easily so that only space derivatives remain. It is clear that 
the dependence 

A = A(u, uz) 

will occur through time differentiation of each term of A and back substitution for 
the time derivatives of u from the right hand side of (2.2) (where the function F is 
relatively simple). For the equations of gas dynamics, ihis procedure will result in 
unnecessarily complicated difference methods with the associated disadvantage 
that the form of the algorithm will not be conservative.’ 

1 G. Zwas and S. Abarbanel have shown, however, for the scalar case where A = a(u), that the 
I-thtimederivativeofucanbegivenbythecompactuqpression~~(=(~~,n=I-l, 
Whidlp-the amservation form of the associated dilkmltial equ&ion. 



550 BURSTEIN AND MIRIN 

Instead of pursuing this approach, we use the alternate procedure which we 
first discussed, and which was first pointed out by Robert Richtmyer [l]. He showed 
that the Lax-Wendroff method could be written in two steps. For each step, only 
an evaluation offi is required-just what one would expect from a Runge-Kutta 
type method. The third order method which we now describe was first proposed 
by Rusanov, and we repeat some of the results that are contained in his paper [3]. 
We consider a sequence of iterates to the solution u(t). The r-th iterate, zP, defines 
an approximation to rl, which is given by the system 

r-1 

P = U'O) + At c a,J(t, , U'S)), 
S=O 

r = 1, 2 ,..., R. 

The function F is evaluated at time t, = to + T, df, s = 0, I,... R - 1, with 
u(O) = ri(r,) defined at to and 7. = 0. 

A solution ~1~) = u(th is obtained at tI = to + dt. To advance the solution 
from r, to tz , the above procedure is repeated with to replaced by tl . The OL,, are 
determined by requiring that u@) satisfy the Taylor expansion 

I(W) = u(o) + dr (!g) + g (zg) + +!f (cg) + @At") 

up to the required order of accuracy, which is three. The quantities in parentheses 
are difference approximations to the derivatives of U, . To apply this procedure to 
the partial differential Eq. (2.2) it is convenient to write out the sequence of iterates 
using the notation UT’ = U(Xi , tn) with t,+I = t, + dt and h = dr/dx. We use 
the following spatial difference operators in the derivation 

PAxi) = Bcf(xi,ltz) + f(xi-l12)> 

6f(x,) = fCxi+llJ - SCxi-l/2> 

(2.3) 

and thus 

Then u,!‘) = il(xt , r,, + 71 dt) is given by 

% (‘) = E(xi , t, + Q At) is given by 

(2.4) 

(2.5) 
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and $+’ = ~1”) = zi(xi , t,, + dt) is given by 

.;+I = up’ + a&{A(Z + e,,sy pfyp} 

+ og(Z + &,S2) vp, + %&wf:S’~. (2.6) 

The sequence (2.4X2.6) is chosen to be in flux divergent form since the original 
differential equation is in this form. Equations (2.4) and (2.5) are generalizations of 
Richtmyer’s two step method; it will be shown that this form will lead to a one 
parameter set of difference methods. Equation (2.6) represents a linear combination 
of central differences of the flux at the three previous time levels to, to + 71 47 and 
to + TV 4t. The quantity &O:,,, replaces uT+l,B for stability of (2.4) (and indeed for 
stability of ui”)). 

The prescription to find the arll is to use operators (2.3) in (2.4)-(2.6), and then 
expand each term in the brackets as a Taylor series; for example, 

PA 3.6 + fhx4~w 

% = 4.h fix + &&x4*/8) (2.7) 
pSfi = d,h 4x + $dEsh 43. 

We use the symbol [=I to indicate that the expressions (2.7) are correct modulo 
terms O(d.9). In order to compare the resulting expression with the third order 
expansion 

u”+l = 18’ + (d@) 4t + (d@) 2 “’ + (dt,@) $ + O(4t4) 

= u” + (dzf”) 4t + (d,,f”) $ + (dmf”) 7 + O(4t3, 
(2.8) 

the functions f(l)(to + 71 4t) and f(“)(t, + 72 4t) must be expressed as Taylor 
expansions about f” = ftO)(to). For instance, since we want to find @jT), first use 
(2.7) and then apply Taylor’s formula to the result to obtain 

p6f:2’ s (d,ffO’) 4x + 72 4t(d,,d’“‘) 4x + v (d,,,fj”)) 4x + ; (dsdjo’) 43. 

In a similar fashion, we obtain the required expansion for each of the bracketed 
expressions in equation (2.6). The expression for zP+l results in 

u”+l = u” + (aso + a3(d,f) 4 t + aaa+Lf) 4 t” 

+ OL 2T2 SB W,,tf) At2 

+ f (am + ho& + 4 d,,f4t 43. 
(2.9) 

581/S/3-13 
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The terms containing ag are at most second or&r accurate so to preserve the 
accuracy of rP+l, or, = 0. 

Comparing (2.8) with (2.9) we see that for r.P+l to be third order accurate, 
Eq. (2.6) must have coefficients %d and 0, which satisfy 

%o + %I = 1, a&=;; 

(2.10) 

DLso + 6aJ& + am = 0, %d 1 
2=6’ 

These relations imply that ar, = 314, cu, = l/4, rr = 213 and 0, = -213. 
Again, by using this expansion procedure on the bracketed expressions in EIq. (2.5), 
we obtain 

For the above equation for u (*) to differ from the Taylor expansion for a(*) about 
un by only terms of O(AP), the %, must satisfy 

%o + %l = 7%) %lTl = h*". (2.12) 

Similarly, for Eq. (2.4) to yield first order accurate data for a(r), 

%o = 71. (2.13) 

Hence, we have specified the coefficients to within one parameter, namely, TV. 
For 7r = l/3, we have ar, = 0 and “sl = 2/3. In this case the difference equa- 

tions become 

u(l) 
++1p = 2 M+1 + %9 + 5 CA@+, -&qJ (2. Ma) 

Up = ujn + 3 Wi$,, -f&s)) _ (2.14b) 

These equations are the analog of the integral of the conservation law. To see this 
we use Fig. 1 to define integral quantities U, and U,: 
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U, = / u(x,t,) dx 
XI 

U. = I u(x,t,) dx n 
Xl 

FIG. I. The Region of spacetime domain over which the conservation laws, Eq. (2.2), are 
integrated. 

Integrate (2.2) over the shaded region in the space time domain to obtain 

In the above expression u#) and a&) are the values of u at the net points x, and x,; 
the time dependency is indicated. The values of u computed by system (2.14) yield 
a sequence z&), to < fi < fl, which allows the integrals of the flux over the time 
interval tl - l,, to be approximated more accurately. The sums U, , U, are seen to 
be telescoping sums infcancelling in pairs over all net points between xl and xz . 

We show in the next section the stability properties of system (2.14); indeed, 
(2.14) is unconditionally unstable (after all this effort!). If the right hand side of 
(2.14c) is denoted by R”, then a stable scheme is obtained by subtracting an 
undivided difference quotient of fourth order from Rn, i.e., 

.;+l = R” - ; &;, 0 > 0. (2.15) 

The net point cluster of the difference scheme (2.14) is shown in Fig. 2. / 
l-.Lcx-. -c 

\ 

i-2 i-l i i+l I+2 
X 

FIG. 2. Net point cluster for difference Eqs. (2.14~1, b, c) and (2.15). 
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The points designated o are tist order accurate data, n-points are second order 
accurate data, and the x -point is the third order accurate solution. The schematic 
indicates the operator deked by (2.14a) is applied five times, (2.14b) is applied 
three times, and (2.14c) and (2.15) are applied once. Another scheme is obtained 
for TV = 213 (% = g, = l/3); for this choice of TV the difference scheme is 
given by 

u!l’ r+l/Z = 2 1. (q+1 + $9 + f w;+1 - ml 

up) = Ui” + 5 1; [(f& - f:$> + ; (f:++, - &I] 1 

and Eqs. (2.1449 and (2.15). 

(2.16a) 

(2-W 

The net point cluster of this difference scheme is also shown in Fig. 3. 

FIG. 3. Net point cluster for difference Eqs. (2.16~1, b), (2.14~9, and (2.15). 

Since (2.14c) requires second order data uj’), as well as initial data, ~1”’ for evalua- 
tion, in principle any second order difference operator can be used to generate this 
data; in particular u:“’ could be obtained from 

U(e) = Ui” - ; (fT+,, i -fL) + ?g {4+1,aCf+1 -.a - A&&$ -fi,)> 
which is the Lax-We&off method. 

In addition, a simple method can be used to obtain fkst order accurate data uil) 
other than (2.14a) or (2.16a). The only requirement is that the overall scheme be 
stable. In choosing alO = 71 we have considered only values which result in positive 
weights in (2.5) and a value for the time step of (2.4) which is less than or equal to 
the time step of (2.5). The permissible range of alO required to satisfy these con- 
ditions is l/3 < cu,, ,( 213. 

3. STABILITY OF THE ONE DIMENSIONAL DIFFERENCE OPERATOR 

Let M be the amplification matrix obtained by first lettingf(u) = Au and then 
substituting (2.14a) and (2.14b) into (2.14~9 subject to the viscosity expression 
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(2.15). The ampli6cation matrix of this combined system, obtained by substituting 
u, exp(iux) for utn is 

M((, A, w) = z - y sine LJ - p (1 - cos f)” 

+ ihA sin f (1 + 5 (1 - cos &l - h2A2)) (3.1) 

where5 = KdxandO <e <r. 
Call m the eigenvalues of M (see Fig. 4) and u = r\p, p the eigenvalues of A. 

Construct the function g([, u, o) from the real, R, and imaginary, Z, parts of (3.1) 
by 

g = R2 + Z2 - 1 
= Im21 - 1. (3.2) 

Absolute value of the eigenvalues of Equation (3.1) showing dependence on o. 
The values of u are within .05 of the maximum allowable for each O. 

curve 
numbcl w 

0 

l/3 

213 

313 

513 

813 

913 

Kv3 

u 

1.00 

0.05 

0.15 

0.25 

a45 

0.80 

0.95 

1.00 
.  

c 

-0 

Fro. 4. Spectral radius of the right hand side of Eq. (3.1) showing dependence on o. The 
values of u are within 0.05 of the maximum allowable for each O. 

Since it takes so much effort to compute g, we shall state its value here. 

g(5, u9f.d = $ d 
sin4 [ + -j- T + ( 

(1 - US)” 3 
) 

sin2 Ml - cos .$a 

+$1- cos f)4 - y (1 - cos 02 

+ 5 oz(l - d) sin% &l - cos 4). (3.2a) 
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Now 1 me ( < 1 if, and only if, g < 0. Allow 5 = r and observe that 

g(7r, u, 0) = $w(w - 3) & 0 

if, and only if, 0 < w  < 3. 

(3.3) 

For small values of 5, g can be written as 

m(g, u, 01) = eioP + (40e - u4 - W) $ + O(g”). 

Geometrically, one sees that g will exceed one, in the complex plane, unless 

w  > 4u2 - d. (3.5) 

That is, the operator (2.14) will not be stable. Hence combining (3.3) and (3.5) we 
conclude that 40~ - 04 < w  d 3 which in turn implies that 0 < u2 < 1, 
3 < OS < 4. To show that Oa takes on allowable values only in the interval 
0 < aB < 1, which is more strict than the Courant-Friedrichs-Lewy condition [4], 
it is necessary to show that for any value of u such that 3 < dd < 4, there exists a 
5 = 6% # 0 such that g(& , , u w) 3 0 for w  given by (3.5). In equation (3.2a) 
set g = 7r/2: 

g(+.u9~) = & (w” + ~(60~ - 12) + (40~ - 230~ + 2803) 

3 $ ((4~~ - 03” + (40~ - u4)(6u2 - 12) + (4d - 23d’ + 280~)) 

= g (u” - l)(u~ - 4)(u2 - 5) > 0 for 3 < u2 < 4. 

Weseeg<OonlyifO<u2<1. 
It is clear that if w  = 4u2 - a’ and if 0 < u < 1, then g < 0. Setting 

g*(S, 4 = g(5, 0, 4u2 - a”), 

and noting that sin* 5 = (1 - cos 5) . (1 + cos 0, we compute 

g*(f, 4 = $ (1 - cm 6)” (4 - u2)(1 - US) + Pz(cos g), (3.6) 

where the quadratic polynomial Ps is defined by 

P,(x) = ax2 + bx + c 

a = -(l - 03 

b = 2(3 - u”) 

c = -(5 - u”). 

(3.7) 
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It can be shown that PAX) < 0 if x < 1, which implies P&OS 0 < 0 if 
0 < 6 < 7r. Clearly, g&, u) < 0 since 0 < $ < 1. One also observes that 
g,(O, u) = 0. At thi s point we have shown that the right side of (3.2) is negative 
definite for 7~ > e > 0 and 

(0 O<a<l 

(W W = 49 - 04. 
(3.8) 

We exclude the case where u = I, since if that occurs, w  = 3, and g(& 1,3) = 1, 
which leads to I ma 1 = 1, i.e., the associated difference operator is not dissipative. 

We look at the quantity 1 tn 1 . It can be bounded (using (3.4)) for small 5: 

I m I d 1 + ( 4u2 - 2” - ~7’ ) c + O@). (3.9) 

One can show that for any u E (0,l) there exists an e > 0 such that if 
o=4uB-u4+eandO<t<m,&, u, w) < 0, which is equivalent to I m I c 1. 
There exists a pair (8, , q), each greater than zero, such that 0 < e < q, implies 
1 m I < 1 - S#. Since [q, s] is compact and since I m [ < 1 on [q, ~1, there exists 
a positive 6, such that if q f 5 < n, then I m I < 1 - S.#. Let 6 = minimum 
(6,) 8J; we see that the difference scheme associated with the amplification matrix 
(3.1) is dissipative for 0 < 4‘ < 7r in the sense of Kreiss since 

I m I < 1 - Se’, 8 >o. (3.10) 

Since the accuracy is of order 3, (3.1) is stable [5]. 

4. Two DIMENSIONAL METHODS 

For two dimensional hydrodynamic flows in which x and y are the cartesian 
coordinates, the equations of motion can be written in conservation-law form 

ut =fi+g,, (4.1) 

where g is the vector representing the flux of the mass, momentum and energy per 
unit volume in the y direction. We carry out differentiation of (4.1) using the chain 
rule to obtain 

Ut = A(u) 24, + B(u) u, . 

In general the matrices A and B do not commute and are not normal. 

(4.2) 
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If one considers the class of linear problems where A, = A(u,) and 
B. = B(Q), U, the state about which the motion is linearized, then (4.2) may be 
integrated to yield 

u(t + At) = Pu(t), 

P = exp [(A~ & + B, -$ LIP]. 
(4.3) 

Equation (4.3) is also valid even if A, and B,, vary; however, the variation must be 
independent of time. With the obvious change in notation P may be written as 

P = e‘+B. (4.4) 

This operator is called the exact solution operator of equation (4.2). The Fourier 
transform of P, P = exp(i(& + Bv)) is called the symbol of the operator P 
(see Ref. [5]). By multiplying the initial data u(x, y, 0) = u(O), r successive times 
using the operator P, we can map u(0) into u(T), T = r At. 

In forming difference approximations to (4.1) or equivalently in approximating 
the operator P, the question of stability arises. The analysis of stability of the 
difference operator becomes difficult, especially as the order of accuracy (and 
corresponding complexity) of the difference scheme increases. Indeed, in Strang’s 
paper [6] on the construction of accurate difference methods, he is motivated in the 
construction of difference methods by approximating P to the desired degree of 
accuracy by operators which are products of e* and e? 

It is well-known, for instance, that a first order approximation to the matrix P 
can be written as 

P = eW’ + O(At2) (4.5) 

since A and B are of order At. The error in (4.5) goes to zero when A and B are 
scalars. The operators eA and eB can be thought of as exact solution operators to 
the one dimensional differential equation of the form (2.2a) defined separately for 
the x and y directions. Let L(A) and L(B) be difference approximations to the 
operators eA and eB, respectively. If e(A) is the symbol of the x-difference operator 
and 

1 E(A) - eiAt 1 = O(&+l), (4.6) 

then we conclude that the difference operator is accurate to order p. 
Strang has shown [6], [7], and [8] that if one considers an operator &(A, B) 

formed from the product of the one dimensional operators 

JW, W = U) W) 
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then 

I KU, B) + m, 4) - p I = a5”, q”), (4.7) 

where P has been defined previously. Strang has also noted recently [S] that it is 
possible to satisfy (4.7) with the product 

replacing the sum in (4.7); hence (4.8) provides the structure for another difference 
scheme of second order accuracy. 

The stability of (4.8) follows immediately from the stability of each one dimen- 
sional operator L(A) and L(B). For (4.8) to be second order accurate and stable 
each one dimensional operator, given by 

&I/2) = I - (h/2) A6 + (P/8) ASP, (4.9) 

which is the Lax-Wendroff operator, need be stable; this requirement is fulfilled if 
the eigenvalues of A and B, p(A) and p(B) satisfy 

(4.10) 

Equation (4.8) can be used with a second order two step procedure rather than 
(4.9), i.e., Eqs. (2.14a) and (2.14b) or system (2.16) (with the appropriate time 
step). The advantage is the elimination of the evaluation of the matrix A in the 
difference scheme. 

Gourlay and Morris [9] have performed some computations with such schemes. 
They have adopted the operator in (4.7) for practical computations by using 
two step versions of L(A) and L(B). 

We wish to look for difference schemes of the form given by (4.8) which are of 
uniform third order accuracy. The structure of the difference operator will then be 
based on the third order one dimensional operators discussed in Section 2. 

We have considered generalizations, of the operators given in (4.7) and (4.8), 
of the form 

(4.11) 

where Cr cj = 1 and C LQ = C pi, = 1 with each OL, fl > 0. 
Clearly, if one chooses c, = 1 with alI = /III = fi,, = olgl = l/2 and 

cxzl = 0 = /IsI , then (4.11) becomes 

&(A, B) = eAleeBe”IP. (4.12) 
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With the constants c1 = l/2 and al1 = al = 1, and c, = l/2 and 
u12 = 0 = Baa , & = 1 = azz , (4.11) becomes 

s, = +(e”e” + eBeA). (4.13) 

The operators S, and S, are the operators Strang has investigated. It is interesting 
to consider the operator formed from linear combinations of (4.12) and (4.13), i.e., 

If the one dimensional differential operators in (4.14) are replaced by corresponding 
one-dimensional difference operators defined by 

L(A) = I + hAp6 + ; AW + ; AWpS, (4.15) 

then it may be verified by direct computation that the resulting difference approxi- 
mation & to the differential operator S, satisfies 

L, = I + X(A + B) + (hP/2)(A + B)s + (hS/3!)(A + B)“. (4.16) 

Here, for simplicity we have used the abbreviations A = A(u) 6%) B = B(u) 6, for 
the centered difference operators and A = At/& d = dx = dy. This is precisely 
the expansion for (4.4) up to cubic terms. The operator, S,, was first found by 
J. Dunn. 

The procedure used to derive the third order approximation to (4.4), which is in 
some sense computationally optimal, follows. 

The operator defined by (4.14) is complicated and inefficient as it requires ten 
sweeps through the mesh-five in the x direction and five in the y direction-to 
advance the solution one time step. It is clear that more compact forms resulting 
in economical algorithms suggested by (4.11) are desirable. Consider the differential 
operator 

cl&P + cgeOUle@Be(l-~)Ae(l-~)B. (4.17) 

If the constants are chosen correctly (4.17) can be made to ditfer from (4.4) by 
terms of O(dt*). To do this first expand each of the exponential forms up to terms 
involving cubic powers of the matrices A and B. This allows the evaluation of the 
term corresponding to the coefficient c,: 

I+(A+B)+~(Aa+B3+[a+(1 -41 -BIlAB 
+ r&l - a)] BA + &P + B”) 
+ )[u* + 2a(l - a)(1 - /3) + (1 - a)* (1 - fl] A’B (4.18) 

+ 4w - a) ABA + 4(1 - a)a BAa + &gs(l - a) PA 

+ @(l - a)(1 - /3) BAB + Hap + 2a;B(l - B + (1 - 8)*] AF, 
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and the evaluation of the term corresponding to the coefficient c,: 

I + (A + B) + &(A2 + B”) + Al? + $(AS + P) + $(A9 + A@). (4.19) 

For simplicity we just equate the coefficients of the matrices BA, ABA and BAB in 
(4.18) to their proper values: 

c$(l - a) = 4, 

and 
c&3(1 - a) = ;, 

c2B(l - 4 - PI = 4. 

These equations yield the values a = l/3, fl = 213, c2 = 918 and cl = -l/8. We 
again observe the appearance of the nonpositive weight in our difference scheme. 
The difference equation becomes 

L, = (9/8) L(A/3) L(2B/3) L(2A/3) L(B/3) - &L(A) L(B). (4.20) 

Each one dimensional difference operator in (4.20) is defined by (4.15). The proof 
of stability of (4.20) (and that of (4.14)) does not follow from the fact that the 
norm of each one dimensional operator I L I < 1. If each coefficient Ci in (4.17) 
were greater than zero, then L4 would be a convex operator and one could con- 
clude in that case that Ld had norm less than one. We defer this question until 
later. 

It appears that (4.20) is most efficient in the sense that the number of one dimen- 
sional sweeps is a minimum for a third order operator. One needs at least six 
applications of the exponential operators eA and eB to match the noncommutative 
terms that result from the third order term in the Taylor expansion for c++~; i.e., 
$(A + B)3. The proof of this statement involves consideration of linear combina- 
tions of products of eA and eB taken two at a time and three at a time. All such 
combinations fail to yield simultaneously the matrix operators ABA and BAB. 
Next, consider product combinations of the one dimensional operators taken four 
at a time: 

Expanding and considering the requirement that second order accuracy implies 
B(l - a) = l/2, we find that for third order accuracy a = l/3, /3 = 213. Hence 
there is a contradiction. Finally operators formed from products taken five at a 
time are of the general form 

eW$f-Ve4eWe%~ (4.21) 

For (4.21) to be third order accurate aI must satisfy 12aX2 - 6a1 + 1 = 0. This 
polynomial however has only complex roots, 
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Hence a third order splitting method of the form (4.11) must have at least six 
terms. We state that the linear combination of the form (4.12), i.e., 

C1p4&+h4 + ,p&&B'B 

cannot differ from eA+B by terms of O(dt4). Satisfying consistency requires that a 
and /3 must satisfy 

ga - /?)(a + #I - 1) = 0. 

If (Y = fi we can show that OL must satisfy a quadratic in cy with complex roots. If 
01 + /3 = 1, 01 satisfies (LX - 1/2)(c~ - I) = 0. Now OL # 1 so OL = l/2 and there- 
fore /? = l/2 which is a contradiction. 

If one were to consider only operators with cf > 0, then third order accuracy 
could still be obtained but with a relaxation of the condition that all oli , & > 0. 
Although the analysis of stability would be trivial, one would have to accept multi- 
step difference methods with operators having a negative time step. For flows 
which contain shocks or other irreversible phenomena the problem is not well 
posed. If the flow is smooth and thermodynamically reversible there may be no 
drawback to such methods. We indicate in section 7 some results using (4.20). 

5. &YMPTOTIC OPERATORS 

It is possible to generate a difference operator with 0~~~ , fidi and c+ > 0, but only 
asymptotically. Consider the differential operator 

S(A, B; N) SE eAINe8BIN&IN 

and its conjugate S(B, A; N). Then 

S, = @(A, B; N) S(B, A; N)yYj4, N = 4, 8,... (5.1) 

is called an asymptotic third order difference operator. SN would be an exact third 
order operator if the coefficient 8, of the terms (A*& @A), @?A*, AP) and the 
coefficient 8, of the terms (ABA, BAB) satisfied a1 = 6, = l/6. Instead these 
coefficients are functions of N. We have computed bounds on the coefficients and 
show them for several values of N: 

N I 4 - l/6 I < I 8, - l/6 I -c 

4 0.0053 0.0105 
8 0.0013 0.0026 

12 O.ooo6 0.0012 
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It appears, that using (5.1), 

I$pN - P j = O(dt4). 

Since I S(A, B)I < 1 and I S(B, A)1 < 1, then I S, I < 1 which shows the 
stability of (5.1). The operator defined by (5. I) achieves its accuracy by using finer 
and finer time steps, At/N, as N -+ 00; indeed it is the form assumed for S, that 
gives the rapid convergence of coe5cients 6,) 6,. The operator (eAINeBIN)N12, 
N = 2,4,... will also give asymptotic high order accuracy (greater than first order) 
but requires many evaluations (large N) per time step. In comparison, (5.1) may 
be satisfactory for N = 4. 

6. STABILE OF Two DIMENSIONAL OPERATORS 

Except for the brief discussion on the stability of asymptotic operators, we have 
not found a satisfactory method for the analysis of the stability of the operators 
given by (4.11). Our only recourse is to carry out a numerical analysis of the eigen- 
values of the amplification matrix using the digital computer. We have completed 
a calculation in which the independent variables are the wave numbers (t, 7) in 
(x, v) space. We took the dissipation coefficient o to be w  = 40” - u4 + E with 
-0.2 < E < 0.2 in steps of 0.1 and with 0 < u < 1 also in steps of 0.1. 

From this parametric study, it appears that the spectral radius of (J?.& v), the 
transform of (4.20), satisfies 

I P@4& $)I < 1 (6.1) 
and 

I P(eq(S, ?))I G 1 --s~e~4,s >o (6.2) 

2 where 8 = (5” + r) ) V2 is the L2 norm in wave number space, if 

(0 
(ii) 

O<a<l, E),O 

u = 0, E > 0. 
(6.3) 

However, if 0 < u < 1 and E < 0, the spectral radius exceeds one. Indeed, if 
Q = 0.1 we can choose, in (6.2) 6 = 10”’ uniformly independent of u. To achieve 
this define 

a’= l - cc(s9 rl) 
84 ’ 

then pick 
s = &I$ 6’. 
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We have found that 8’ is smallest when (&q) is near (x, T). For 5 = 77 we indicate 
the behavior of ) ~(5, ()‘>I in Table I. 

We have defined the distance from the origin r = d/z t in wave number space 
and E = w  - (4u8 - d’). In the next section we present further evidence as to the 
usefulness of these third order operators. 

TABLE I 

(I A&1(1, m - 1) 

1 f  = -0.1 c=o e = +0.1 

0.0 0.0 0.0 0.0 
0.01 2.9 x lo-” -1.6 x lo-” -6.0 x 10-l’ 
0.10 2.9 x lo-’ -1.6 x lo-’ -6.0 x IO-’ 
0.5 1.7 x IO-” -9.7 x 10-s -3.7 x IO-’ 
1.0 2.6 x 1O-3 -1.5 x 10-s -6.5 x lO-3 
2.0 3.2 x 1O-2 -1.9 x 10-8 -6.7 x lo-* 
3.0 1.0 x 10-l -6.2 x lo-% -2.1 x 10-l 

7. R~JLTS 

We describe some numerical experiments carried out with the scheme (2.14) for 
the Riemann problem in one dimension and with (4.20) for a two dimensional 
scalar problem invented by Crowley [lo]. 

Figures 5 and 6 show the results of two calculations using system (2.14) and 
(2.15) to obtain approximate solutions to (2.2). Both calculations start with the 
same initial data, i.e., two constant states separated by a discontinuity: 

p-‘(x) = 2.0 

1 

p-‘(x) = 2.245 
u(x) = 0.0 x>o u(x) = 0.698 x < 0 
p(x) = 0.571 p(x) = 3.528 I 

In Figure 5, 0 = 0.9 with w  = 0.75. The instability is clearly shown. Figure 6 
shows the solution at approximately the same time; here cr = 0.9 with w  = 2.8. 

We have tested the third order method in two dimensions on the following 
scalar problem. The daerential equation 

rt + UT, + vry = 0 (7.1) 
describes the motion of the function r(x, y, t) in the x - y plane if the velocity 
components u and v are specified. We take them to be 

(J = I 42 I (-,‘) (7.2) 
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-250.00 -150.00 50.00 50.00 50 250.00 

Position 

FIG. 5. Pressure and density profile for the Riemana problem after 188 AT (T = 30.138) 
using o and (u not satis@ing i?q. (3.5). 

which means that the velocity vector depends only on the radius; i.e., v = Sk 
defines solid body rotation (in our problem centered at (x0, y,) = (3430)). If the 
components of (7.2) are differentiated with respect to x and y respectively we see 
that one may write (7.1) in conservation form 

rt + (urlz + (UY), = 0 (7.3) 

since the velocity field is divergence free. The distribution r(x, y, t) is prescribed at 
t = 0 to be a right circular cone in (r, x, v) space centered at (37,37) with base 
radius of five and Ax = 4~ = 1. Equation (7.3) subject to (7.2) states that the total 
variation of r(t), &@)/I&, along circles with radius centered at (x,, , JG,), vanishes, 
i.e., r is just uniformly rotated with period t = 2742. In our computation the mesh 
size is 60 x 60 while the cone height is one, 
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0260.013 I 45ODO -50.00 50.00 150.00 260.00 1 

Position 

P 

~250.00 -150.00 -50.00 50.00 150.00 250.00 

Position 

FIG. 6. Pressure and density profile for the Riem problem after 163 AT (T = 30.065) 
using o and o satisfying Eq. (3.5). The rarefaction wave propagates to the left; the contact 
discontinuity is located at x = SO; the shock propagates to the right with an error less than one 
per cent of the theon%M shock speed. 

Table II is a summary of the computations performed for this cone problem. In 
problem 1, the first order scheme is defined by the operator (4.5) while for problems 
2, 3 and 4, the second order scheme is defined by the operator (4.8). The third 
order scheme is given by (4.20) with L defined by system (2.14) and (2.15). The 
value of o in problem 5 did not satisfy the stability condition (3.5); it was kept 
constant. For problems 6,7, and 8, the local value of o &is&s o = 409 - CT’ + l 

with f = 0.01. The value of 0 is equal to At/A 1 v ( with 1 v ) = (9 + u$Y.Ia. The 
components of drift of the vertex of the cone in the x(u) direction equals the x(y) 
position of the vertex computed by the Merence method minus the x(y) position 
of the vertex given by the exact solution. 
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TABLE II 
Summary of Computations for Cone Problem 

Problem Method 

Computed No. of 
Rotations vertex Vertex Drift integration 
traversed amplitude x-direction y-direction C&3 

6 

7 

8 

9 

10 

11 

first order 
second order 
amax = l/6 
second order 
omar = l/3 
second order 
omsl = S/6 
third order 
w = const = 0.01 
emu = l/6 
third order 
o,,,u = l/6 
third order 
Rnax = l/3 
third order 
enax = 417 
third order 
emu = 416 
thud order 
emu = S/6 
third order 
w = const = 0.01 
emu = l/3 

l/4 
1 

1 
2 
2 

1 

1 

1 
2 
2 

w2 

0.07856 6.28699 
0.98935 1.65263 

0.98363 1.55743 
0.82304 2.37585 
0.79365 2.25867 

1.15205 0.33053 

1.03803 0.26070 

0.99707 -0.24833 
0.89400 -0.24059 
0.81353 -0.33365 

unstable 

5112 unstable 

l/2 
1 

2.07856 150 
-2.51629 600 

-2.29384 300 
-3.70616 600 
-3.41507 240 

-0.29569 600 

-0.34469 600 

-0.36810 300 
-0.45386 600 
-0.45469 350 

150 
300 

We see how poorly first order methods compare with second or third order 
methods in the amplitude and phase of the solution. The most striking dilference 
between second and third order accuracy is in the computation of the phase of the 
solution. The position of the vertex is within one half mesh width in both the x 
and y directions for the third order calculation, but is two to three mesh widths 
from the exact position in both the x and y directions for the second order calcula- 
tion. For both second and third order schemes, increasing the time step At with tied 
space step increases u period. This results in greater dissipation in the third order 
difference scheme. Increasing At also increases the artificial viscosity in the second 
order method [see 1511 and, therefore, the greater smoothing reduces the maximum 
amplitude of r(x, y, t). 

Problems 9 and 10 went unstable for the values of u indicated. Hence, one obtains 
an approximate upper bound for CT, which gives an approximate upper bound for 
an allowable time step. 
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The remaining figures are labeled as to problem number, which corresponds to 
the problems given in the table on the preceding page. The figures show the overall 
behavior of the various methods and give means for a quick comparison between 
themethods. Thecontourlines,ateachinstantoftime,definevaluesr(x,y) = const, the 
values of which lie between 0.05 and 0.95. For clarity, the snapshot of the solution 
at the latest time has been shifted by an amount d, which is indicated on the 
figures. 

I terotion number 600 

Iteration number 0 

2.5 

0 .05 1.5 2.5 3.5 4.5 5.5 4 5 

FIG. 7. Problem 24econd order method with urn= = l/6 and computed verte+x ampli- 
tude = 0.989; the exact value is 1. 

The scheme (4.20) required approximately 4 seconds per sweep while the second 
order method (4.8) (alternate sweeps were computed using ftrst L(A/2) L(E) L(A/2) 
then L(E/2) L(A) L(B/2), etc., rather than L(A/2) L(B) L(A) **- L(A) UB) L(A/2)) 
required approximately 1 l/3 seconds. By comparing the numerical results in the 
above table, it appears that the mesh ratio, A, for third or&r methods can be in- 
creased by a factor of three over the second order method. Comparable errors in 
the amplitude of the solution are obtained with the two methods but a clear 
superiority in the phase of the solution is achieved with (4.20). 



I terotion number 

2.5 
t 

11 , , , , , , , , , ‘ , , 
0.5 I.5 2.5 3.5 4.5 5.5 5 

FIG. 8. Problem 3-Same initial data and method as in Fig. 7 but with O~U = l/3; after 
300 cycles computed vertex amplitude equals 0.983; after 600 cycles amplitude equals 0.823. 

5.5 - 

4.5. 

3.5 

2.5 

0 0 
Iteration number 600 

. 

1.5- 

05- 

’ 0.5 1.5 2.5 3.5 4.5 5.5 ( 5 

hG. 9. Problem 6-Same initial data as in Fig. 7; third order method with urnlou = l/6; (u is 
variable and is computed from Eq. (3.5). The amplitude is 1.03 after 600 cycles. 
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5.5 - 

4,5- 

3.5 - 
Iteration number 300 

. 

2.5 

I.5 - 

0.5 - 

j  *. . * . . . . . . , . 
0.5 1.5 2.5 3.5 4.5 5.5 

FIG. 10. Problem 74hne as Fig. 9, but with omu = l/3. The amplitude after 300 cycles is 
0.997 and after 600 cycles is 0.894. 

4.5 - Iteration number 300 

2.5 - 

IS - 

Ikrotion number 150 

0.5 - 

0.5 I .5 2.5 3.5 4.5 5.5 5 

FIG. 11. Problem ll-hne initial data as in Fig. 7; third order method with o = 0.01 and 
amu = l/3. Cakulation doea not sat@ stability condition (3.5). E!ddies are forming wbile the 
amplitude mtion eventually goes unstable. 
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Our tentative conclusion, subject to additional numerical tests is that (4.20), 
using a more coarse mesh, may be as economical as a second order calculation on 
a fine mesh while still giving superior numerical results. In addition, it is felt that 
the methods presented would be best suited for problems with smooth solutions 
rather than shocked flows even though accurate discontinuous solutions can be 
obtained. 
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